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LETTER TO THE EDITOR 

Quantization of Uq[osp(l/2n)] with deformed 
para-Bose operators 
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and International Centre for Theoretical Physics, 34100 Trieste. Italy 

Received 3 June 1993 

Absbact The observation that n pairs of para-Bose 6s) operators generate the universal 
enveloping algebra of the orthosymplectic Lie superalgebra osp(lj2n) is used in order to 
de6ne deformed pB operators. It is shown that these operators are an alternative to the 
Chevalley generators. On this background (i,[osp(l/Zn)l, its 'Cartan-Weyl' generators and 
their 'supercammutation' relations an  written down entirely in terms of deformed pB 
operators, An analogue of the Poincd-Birkhoff-Witt theorem is formulated. 

Soon after parastatistics was invented [I] ,  it was realized that it Carries a deep algebraic 
structure. More precisely, any n pairs of para-Fenni operators generate the simple Lie 
algebra Bn=so(2n+_l) [2 ] ,  yhereas n pairs of para-Bose creation and annihilation 
operators (CAO's) A:, . . . , Ab generate a Lie superalgebra [3], which is isomorphic 
to one of the basic Lie superalgebras (LSS) in the classification of Kac [4], namely to 
the onhosymplectic Lie superalgebra osp( 1 /Zn) B(O/n) [SI.% somewhat more implicit 
form the para-Bose operators (pB operators) were introduced even earlier by Wigner 
[6] in the search for the most general commutation relations between a position operator 
q and a momentum operator p of a one dimensional oscillator, so that the Heisenberg 
equations are identical with the Hamiltonian equations. The operatorsp, q turned out to 
generate osp( 1 /2) and in fact Wigner was the first to find a class of (infinite-dimensional) 
representations of a Lie superalgebra [ 7 ] .  Later on the results of Wigner gave rise to 
more general quantum systems (see [8] for references in this respect and for a general 
introduction to parastatistics), and in particular to quantum systems related to the 
classes A ,  B, C, D of basic LSS [9]. 

Purely algebraically the pB operators are defined as operators, which satisfy the 
r e l a t ions ({ ,q ,E=fo r+ l , i , j , k= l ,2  , . . . ,  n ; [ x , y ] = x y - y x ,  { x , y } = x y + y x )  

Let L(n) = lin en"{ {A!, i?}, i i l t , q, E =  f, i, j ,  k = 1 ,2 ,  . . . , n} be a Z2 graded linear 
space with the pB operators as odd elements. Define a supercommutator on it as an 
anticommutator between any two odd elements and as a commutator otherwise. 

Proposition I [ 5 ] .  L(n) is a LS, isomorphic to osp( I /2n) ,  with an_odd_subspace, spanned 
by the pB operators, and an even subalgebra sp(2n) =lin env{ {A!, A,!'}lC, q, =f, i, j =  

t Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgan'a: E-mail 
address: palev@bgearn.bitnet. 

[{if, i?}, A*"] = ( E -  e)Gjk.2? + ( E -  q)G,*if. (1) 
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1,2, . . . , n}. The pB operators define uniquely osp( 11211). The associative superalgebra 
with unity, the pB operators as free generators, and the relations (1) is the universal 
enveloping algebra U[osp( 1 /2n)] of osp( 1 /2n).  The set of all (arbitrarily) ordered mono- 
mials of the operators 

i # j = l , .  . . , n <=i 
constitute a basis in U[osp(l/2n)], whereas the operators (2) together with all (2?)2 
define a basis, a Cartan-Weyl basis, in osp(l/2n). - 

The proof is based on the relations, following from (1) and (2), namely 

[ H j ,  Â,?] = ?=&Â; {A:, ,$}=-2H, (3) 

[{.if, Aj}, ' 2 f I = O  i#j. (5 )  

[{At, &}, A ;̂]=Csjk'2t- [{Â:, 2;}, Â;] = J'& i # j  (4) 

It is essential to point out that equations (3)-(5) define uniquely the supercommutation 
relations between all Cartan-Weyl generators. In other words, U[osp(l/2n)] can be 
defined as an algebra with free generators H,, Â ?, i =  1,. . . , n and the relations (3)- 

On the grounds of Proposition 1 and using the circumstance that U[osp(l/2n)] has 
already been quantized, i.e., deformed to a superalgebra Uq[osp(l/2n)]= Uq, which 
preserves its Hopf algebra structure [IO, I I], one can introduce the concept of deformed 
pB operators. The deformation of Uq was camed out in a Ckevalley basis. Clearly, it 
deforms all elements of U, and in particular the pB operators A ? .  . . . ,A:. The purpose 
of the present letter is to give explicit relations for the deformed pB operators. We will 
show that the deformed pB operators define entirely the superalgebra. We will write 
down also the quantum analogue of the Cartan-Weyl generators in terms of pB opera- 
tors and the supercommutation relations between the Cartan-Weyl generators (2). To 
our knowledge such relations for any have not been given explicitly even in terms of 
the Chevalley generators. So far a deformation of pB operators was carried out for n = 
1 [ 121 and n = 2  [ 13, 141 cases; there have been several other deformations, which were 
not endowed with a Hopf algebra structure [15,16] (see also references therein). 

We proceed to introduce U,. The Cartan matrix (a,) is chosen as in [ I l l ,  i.e., 
asnxnsymmetr icmatr ixwith a,=], aii=2, i = l ,  . . . ,  n-l,crl.,+l=aJ+l,j=-l,j= 
l , . .  .,n-l, and all other ag=O. Let [ ~ ] = ( q ~ - q ~ ~ ) / ( q - g ~ ~ ) .  Then U, is the free 
associative superalgebra with Chevaltey generators ec,A, k,=q"', i= 1 , .  . . , n, which 
satisfy the Cartan relations 

k,k;'=kT'kj= 1 k, kl = kfi: i, j = I ,  . . . . n, (6) 

kiej=g% I '  k .  k,J = q-"%k, i , j = l ,  . . .  , n  (7) 

( 5 ) .  

Vi,  j = l ,  , . , , except i = j = n  

the Serre relations for the simple positive root vectors 

[e,, eJI=O if i, j =  1, , . . , n and li-jlz 1 (9) 
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4ei+ l  -(q+q-')ejei+lei+e;+lef=O i = l ,  . . . ,  n-1 (10) 

(11) eiej- 2 I - (q+  q-l)e,e,-let+ei- leT=o 

(12) e&"- 1 + (1 - q -  q - ' ) ( e L  le. + enen- le.) + e.-'e;= 0 

i= 2, . . . . n - 1 
3 2 

and the Serre relations obtained from (9)-(12) by replacing e, withf; everywhere. The 
grading on U, is induced from the requirement that the generators e,,f. are odd and 
all other generators are even. Throughout [U, b ] b = ~ b - ( - l ) ~ ' ( " ' ~ ~ ( ~ ) ~ b u  and it is 
assumed that the deformation parameter q is any complex number except 4'0, q= 1 
and $= 1. Equations (6)-(12) are invariant with respect to the antiinvolution (ei)*= 
5 ,  (k,)*=k;', (q)*=q-'. 

A(e , )=e i@l+k j@ej  ' A ( f ; ) = f ; @ k T l + l @ f ;  A(kJ = kj@ki (13) 

The action o f  the coproduct A, the antipode S and the counit E reads [I l l  

S(e;) = -k;le, S( 5) = %ki S(ki)=k;'  (14) 

&(ei) = E( 5) = E&) = 0 E(1)=1. (15) 

Define 2n odd elements from Uq[osp(l/2n)] as (i= 1,. . . , n- 1) 

&=-$[ej ,  [e:+l, [er+2, [. . . , [en-2, [e,-,, e , ] q - ~ ] p - l . .  .],-I 

A, = - $en 
(16) 

At=$[ .  . , , [L.,L-1Ip,L-2lq,. . . l , , f i + 2 l , , f ; + l l q . f l *  A.+=&" (17) 
and another n even 'Cartan' elements 

Kj=kjk;+l . . . k.=qH' Hj=  hi+. . . + h, i=l ,  . . . , n. (18) 

We call the operators KT', A:, i =  1, . . . , n pre-oscillator generators, since in a cer- 
tain representation of Uq[osp(l/2n)] [I71 these operators generate the oscillator algebra 
of the deformed Bose creation and annihilation operators as introduced in [ 18-20] or 
in [21]. Theantiinvolution onthemreads: (A?)*=-A:,(Kj)*=K7',i=1,. ..,n. 

A substantial part of all computational time was spent in deriving the following 
relations: 

K~A; = q % ~ ; ~ i  { A T ,  A t }  = -2 i=l,,..,n (19) 
q-q- l  

- Ki- KF' = -2[H;]  

[{AT,  A)+}, Al1=0  

[{AT, A;} ,  A t ]=2K,AJ  

[(AT,  A;},  A:1,-~=0 
if i < j < k  or k < i < j  

[ { A T ,  AT},  A ; ] = ( q - l - q ) ( A T ,  A:}A; 
i f  X k < j  

[ { A ; ,  A;) ,  4 ] = 0  [ { A ; ,  AT},  A;1,=0 

if k < i < j  or i < j < k  

[ { A i ,  AT} ,  A;]=-2k;Af [ { A ; ,  A;},  AkI=(q-q-'){Ax, A;}A; 
if i < k < j  
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[ {A; ,  AT}, A J = O  

[ { A ; ,  AT} ,  A;]=-2K;’A; 

[ { A ; ,  AT}, A;] =o 

[ { A ; ,  AT} ,  A:]=2KTA; 

[ { A : ,  A;’}, A21$=0 [{AF, A?}, A;’I,=O if i < j < k  t=-1 
[{Af, A!), A f I , - ~ = O  [{Af, A j } ,  Aj],-I=o if k < i < j  t=* (21) 

[ { A $ ,  A!}. &1=0 i f  i < k < j  <=*. 

[{A;,  AT} ,  Ai],-I =o 
if j < i < k  or k < j < i  

[ { A ; ,  A;}, A k I = ( q - l - d { A ; ,  A;}A7 
if j < k < i  

[{AT, AT},  A:1,=0 
if k < j < i  or j < i < k  

[ {Ai ,  A;}, A l l = ( q - q - ’ ) ( A ; ,  A:}A: 
i f j < k < i  

To this end the following lemma turned out to be particularly useful 

Lenirna 1. If[a, b]=O, then [U, [c ,  b ]4]q=[[a .  c] , ,  bjq. [a, [c. b],- i] ,=[[a,  c],,b],-l ;ifa, b 
are even elements and [U, c] =0, then ( q + q - ’ ) [ b .  [a.  [6, c ] , ] , ] = [ a ,  [b,  [6, e],],-l]$- 
116, [h al,l,-~ ,cld.. 

[ax, [ G - ~ ,  [ ~ K - J .  . . I k, [a?, ~ 1 , .  . .I4 
=[. 1 . [aka ak-llq. O k - Z I q .  . , 

In particular, if [a,,aj]=O for all li-jl > I ,  then 

a3lq, U Z I q ,  all,. (22) 

Proposition 2. (A) The free algebra fi, of the pre-oscillator generators and the relations 
(19)-(21) is the quantized U,[osp(l/2n)] algebra with generators ec,f;, k,=@, i= 
1,. . . , n, and relations (6)-(12); (B) The operators 

K:’ A: {AT, A;} { Af . Af } i # j = I ,  . . . ,  n (23) 

are the analogue of the Cartan-Weyl generators (2); (C) The relations (19)-(21) are 
the analogue of the supercommutation relations (3). (4), (5) among all Cartan-Weyl 
generators (2); (D) The set of all normally ordered monomials [ 1 I ]  of the Cartan-Weyl 
generators (23) constitute a basis in L’,[osp( I / 2n) ]  (PoincarbBirkhoiT-Witt theorem). 

We sketch the proof. By construction fi, is a subalgebra of Uq[osp(l/2n)]. The 
expressions of the Chevalley generators in terms of the pre-oscillator generators read 
( i = I , .  . . , n - I ) :  

1 f;=- { A t ,  A , , } K i + I .  
2q 
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From (24) and (19)-(21) one derives all relati_ons (6)-(12) among the Chevalley gener- 
ator.. Hence U,[osp( 1 /2n)] is a subalgebra of U, and therefore U,[osp( 1/2n)] = U,. This 
proves (A). From (16)-(18) one concludes that in the limit q-+l the relations (19), 
(20), (21) of the operators (23) reduce to the relations (3), (4). ( 5 )  of the Cartan-Weyl 
generators (2), which proves (B) and (C). The normal order between the groups of the 
positive root vectors (PRV) A, ,  (AT, A,?}. i<j, the negative root vectors (NRV) and the 
Cartan generators K, is arbitrary but fixed. For instance, PRV < NRV < K1. The order 
among the PRV can be taken to be 

{A; ,  A,C}<AT<{A;,  A i ] < { A Y ,  A:)<A;<{A;,  A;{ 

for all i < p ,  q ;  i<j; j < r ,  s and similarly for the NRV. The possibility for such ordering 
and hence the proof of (D) follows directly from the relations (19)-(21). 

Remark. The relations (19)-(21) are by no means the minimal set of relation among 
the pre-oscillator generators, which define U9[osp(l/2n)]. On the contrary, they are the 
analogue of all supercommutation relations among the generators in the non-deformed 
case.t 

We observe that the Cartan-Weyl generators are expressed in an easy way in terms 
of the pre-oscillator generators and even the anticommutators in (23) remain unde- 
formed. This is due to the fact that the roots of A:, . . . , A ;  are orthogonal to each 
other. Certainly, from (16)-(18) and (23) one can write down all Cartan-Weyl genera- 
tors also in terms of the Chevalley generators, but the expressions are not so simple. 
Here are the Cartan-Weyl generators of the Hopf subalgebra U,[g((n)]: 

{A:, 4 } = - 2 [ .  . . , [h-t,L-zlq9f;-31q,. . .ls,j;+~lq,f;+tlq,f/lp~~lkT~i.. . kil  

i>j (25) 

and the conjugate of (25) with respect to the antiinvolution introduced previously. 
In conclusion we should come back to para-Bose statistics. We have seen that at 

q-1 the relations (19), (20), (21) reduce to (3), (4), (5) and, hence to the equations 
(l), defming the pB operators. Therefore the operators A?, . . . , A i  are deformed para- 
Bose operators. 
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t After the work on the present investigation had been completed, we received a preprint from Hadjiivaoov 
[22], where the question about a minimal set of relations of the pB operators. defining UJosp(l/2n)]. is 
settled. 
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